Downwind of the Flames:

Assessing and Predicting
Wildfire Smoke Related Morbidity
Using Satellites, In-Situ Measurements and Models

Jeff Pierce

Sheryl Magzamen, Emily Fischer, John Volckens, Gabriele Pfister Bonne Ford, Ryan Gan, Will Lassman, Katelyn O'Dell, Maryssa Loer

Project Overview

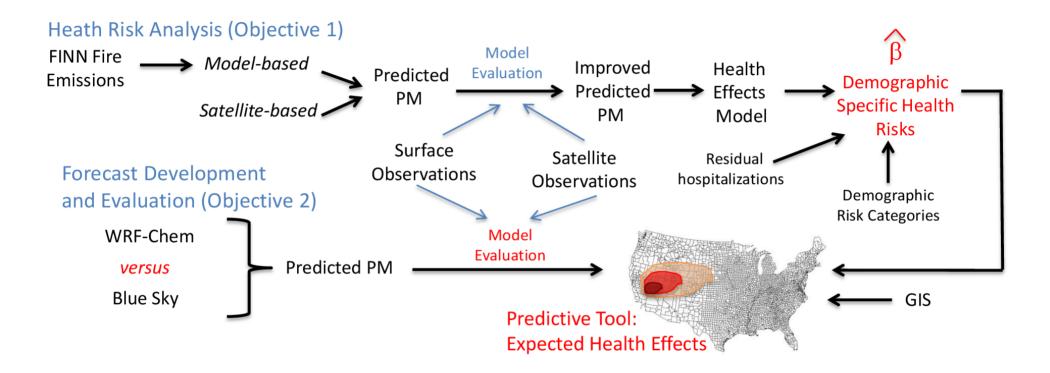
Objectives:

1: Estimate the respiratory and cardiovascular health risks for specific demographic populations exposed to wildfire PM.

2: Evaluate and develop forecast tools that predict wildfire PM concentrations, population exposure and the potential increased morbidity due to wildfire smoke.

Team:

CSU Atmospheric Science: Jeff Pierce, Emily Fischer, Bonne Ford, Will Lassman, Katelyn O'Dell*


CSU Mechanical Engineering: John Volckens

CSU Environmental Health: Sheryl Magzamen, Ryan Gan

NCAR: Gabriele Pfister

^{*} New Student Hired for Project in 2016

Project Overview

Objective 1: Health-risk analysis

Analyze past fires

Time Period	Location (s) of Fires	Most Intense Smoke Impact Regions	Estimated population impact	Notes
8/17/13 — 10/24/13	Rim Fire near Yosemite	Northern California, Nevada	320,000	Reno and Sparks, NV reached >90 μg m ⁻³ PM _{2.5}
8/8/13 - 8/20/13	Central Idaho	Idaho extending to downwind states to the south.	260,000	Unhealthy levels of PM impacted Boise and Twin Falls, ID
7/26/13 — 9/4/13	Douglas Complex Fires Western Oregon	Southwestern Oregon and Northern California	76,000	Medford, OR reached Very Unhealthy Levels of PM _{2.5}
9/8/12 - 9/29/12	Washington Fires	Washington, Oregon, Idaho	33,000	Wenatchee, WA PM _{2.5} was sustained above 400 μg m ⁻³ for several days.
8/12/12 - 9/15/12	Northern California	Northern California and Central Oregon	21,000	PM _{2.5} exceeded 150 μg m ⁻³ PM _{2.5}
8/8/12 - 9/15/12	Idaho	Idaho, Montana, and Wyoming	3,100	ID/MT boarder reached 150 μg m ⁻³ PM _{2.5} .
6/9/12- 6/30/12	High-Park Fire	Northern Colorado	150,000	Fort Collins, CO reached over 200 μg m ⁻³ PM _{2.5}
6/1/11 – 7/1/11	Eastern Arizona, New Mexico	Arizona, New Mexico, Texas Oklahoma	8,900	PM _{2.5} was extremely elevated in regions of AZ and NM
9/6/10 - 9/16/10	Four Mile Canyon Fire, Boulder, CO	Boulder, Denver, Fort Collins, and Colorado Springs, CO	1.32 mil	Hourly PM _{2.5} exceeded 150 µg m ⁻³ over a several day period
8/26/09 - 9/6/09	Southern CA	Los Angeles County, CO	10.02 mil	Hourly PM _{2.5} exceeded 100 µg m ⁻³ in downtown LA
6/22/08 — 9/15/08	Northern California	Sacramento and Chico, CA	550,000	Elevated PM _{2.5} in NV, OR, ID, UT, and CO for ~two months.

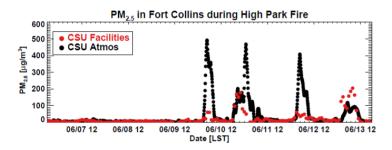
Canadian and Washington Fires Summer 2015

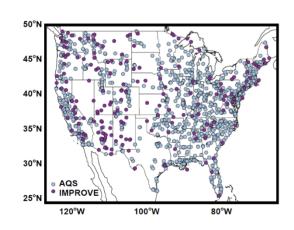
Population estimates were derived from US Census Bureau, State & County Quickfacts: 2012 estimates were used for episodes including and after 2012; 2010 estimates were used for all other case studies.

Objective 1: Health-risk analysis

Analyze past fires

	Time Period	Location (s) of Fires	Most Intense Smoke Impact Regions	Estimated population impact	Notes
	8/17/13 - 10/24/13	Rim Fire near Yosemite	Northern California, Nevada	320,000	Reno and Sparks, NV reached >90 μg m ⁻³ PM _{2.5}
✓	8/8/13 - 8/20/13	Central Idaho	Idaho extending to downwind states to the south.	260,000	Unhealthy levels of PM impacted Boise and Twin Falls, ID
	7/26/13 – 9/4/13	Douglas Complex Fires Western Oregon	Southwestern Oregon and Northern California	76,000	Medford, OR reached Very Unhealthy Levels of PM _{2.5}
✓	9/8/12 – 9/29/12	Washington Fires	Washington, Oregon, Idaho	33,000	Wenatchee, WA PM _{2.5} was sustained above 400 μg m ⁻³ for several days.
✓	8/12/12 — 9/15/12	Northern California	Northern California and Central Oregon	21,000	PM _{2.5} exceeded 150 μg m ⁻³ PM _{2.5}
✓	8/8/12 - 9/15/12	Idaho	Idaho, Montana, and Wyoming	3,100	ID/MT boarder reached 150 μg m ⁻³ PM _{2.5} .
✓	6/9/12- 6/30/12	High-Park Fire	Northern Colorado	150,000	Fort Collins, CO reached over 200 μg m ⁻³ PM _{2.5}
	6/1/11 – 7/1/11	Eastern Arizona, New Mexico	Arizona, New Mexico, Texas Oklahoma	8,900	PM _{2.5} was extremely elevated in regions of AZ and NM
	9/6/10 – 9/16/10	Four Mile Canyon Fire, Boulder, CO	Boulder, Denver, Fort Collins, and Colorado Springs, CO	1.32 mil	Hourly PM _{2.5} exceeded 150 μg m ⁻³ over a several day period
✓	8/26/09 — 9/6/09	Southern CA	Los Angeles County, CO	10.02 mil	Hourly PM _{2.5} exceeded 100 µg m ⁻³ in downtown LA
	6/22/08 - 9/15/08	Northern California	Sacramento and Chico, CA	550,000	Elevated PM _{2.5} in NV, OR, ID, UT, and CO for ~two months.
	Population 6	estimates were derived fron	n US Census Bureau, State & Cou	ınty Quickfact	s: 2012 estimates were used for episodes

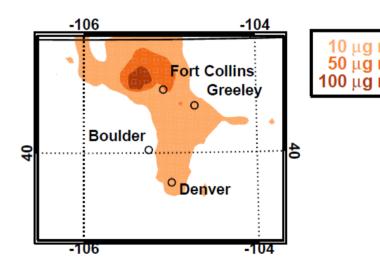

including and after 2012; 2010 estimates were used for all other case studies.


Washington Fires Summer 2015

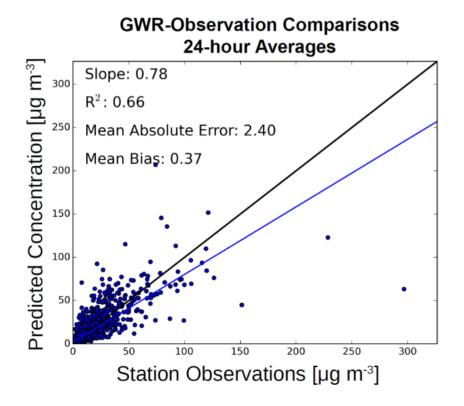
Canadian and

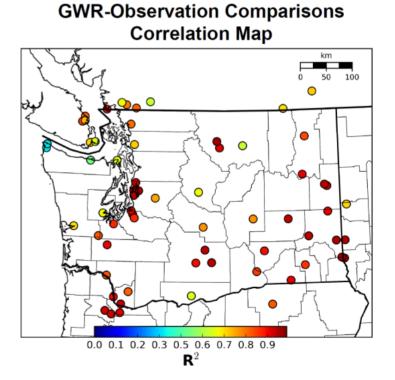
We have three imperfect tools to determine smoke concentrations

In-situ monitors (AQS, IMPROVE)



Satellite observations (MODIS, MISR, GOES)




Chemical Transport Model (WRF-Chem)

We combine information using Geographically Weighed Regression

$$PM_{est} = A + B * PM_{krige} + C * PM_{wrf} + D * AOD_{MODIS}$$

Method to Assess Relationship Between Wildfire Smoke and Health Outcome

Blended wildfire smoke PM_{2.5} concentrations

Join smoke estimates to hospital claims data

Assess relationship using case-crossover study design

Health Outcomes

Hospital claims data from the **Washington State Comprehensive Hospital Abstract Reporting System** (CHARS) for the year of 2012

Health Outcomes

Hospital claims data from the **Washington State Comprehensive Hospital Abstract Reporting System** (CHARS) for the year of
2012

Primary diagnosis of cardiopulmonary health outcomes using ICD-9 codes and restricted to an emergency or urgent care visit

Asthma (e.g. ICD-9 codes 493.00 to 493.92)

Chronic Obstructive Pulmonary Disease (COPD) Exacerbations

Pneumonia or Bronchitis

Arrhythmia

Cerebrovascular Disease

Heart Failure

Myocardial Infarction

WRF-Chem and Geo-weighted method show increased risk for asthma hospital visit as wildfire smoke increases

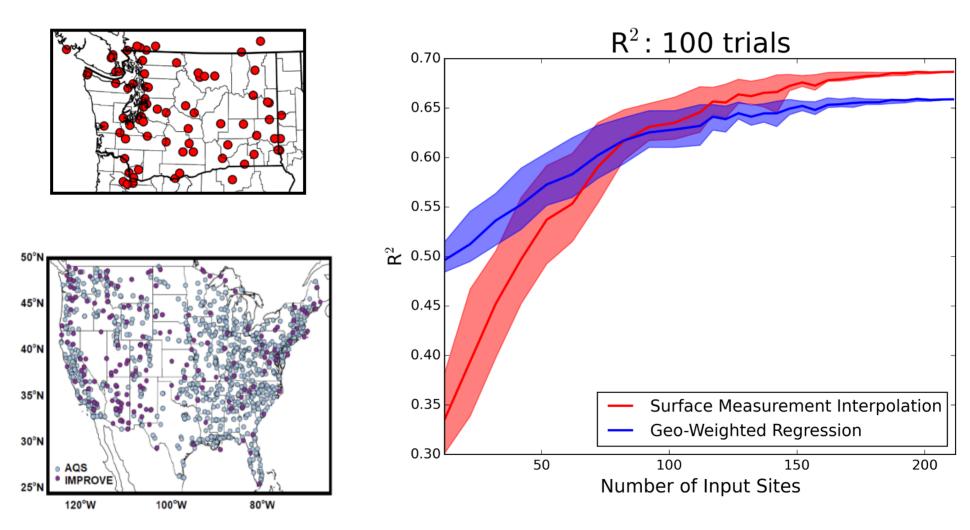
		-Chem ³ increase	Geo-weighted 10 µg m ⁻³ increase		
Health Outcome	Odds Ratio	95% CI	Odds Ratio	95% CI	
Asthma	1.11	1.07 – 1.15	1.10	1.05 – 1.16	

WRF-Chem shows decreased risk and Geo-weighted shows increased risk

		Chem increase	Geo-weighted 10 μg m ⁻³ increase		
Health Outcome	Odds Ratio	95% CI	Odds Ratio	95% CI	
Asthma	1.11	1.07 – 1.15	1.10	1.05 – 1.16	
COPD Exacerbation	0.98	0.93 – 1.04	1.11	1.05 – 1.17	

WRF-Chem shows decreased risk and Geo-weighted shows no association as wildfire smoke increases

		Chem increase	Geo-weighted 10 μg m ⁻³ increase		
Health Outcome	Odds Ratio	95% CI	Odds Ratio	95% CI	
Asthma	1.11	1.07 – 1.15	1.10	1.05 – 1.16	
COPD Exacerbation	0.98	0.93 – 1.04	1.11	1.05 – 1.17	
Pneumonia	0.98	0.94 – 1.03	1.06	1.00 – 1.11	

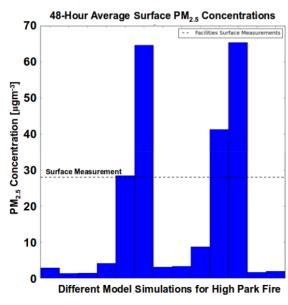

WRF-Chem shows decreased risk and Geo-weighted shows no association as wildfire smoke increases

		Chem increase	Geo-weighted 10 µg m ⁻³ increase		
Health Outcome	Odds Ratio	95% CI	Odds Ratio	95% CI	
Asthma	1.11	1.07 – 1.15	1.10	1.05 – 1.16	
COPD Exacerbation	0.98	0.93 – 1.04	1.11	1.05 – 1.17	
Pneumonia	0.98	0.94 – 1.03	1.06	1.00 – 1.11	

With CDC (Rish Vaidyanathan):

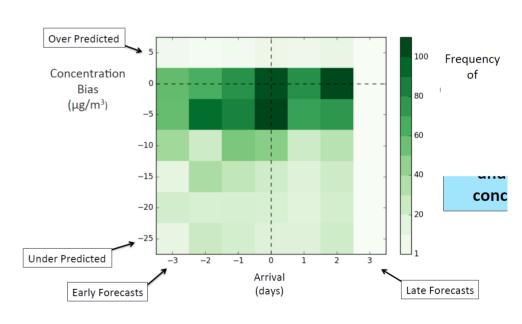
Mortality response to acute smoke exposure using National Vital Statistics data

Blended estimates are important for regions with few surface monitors

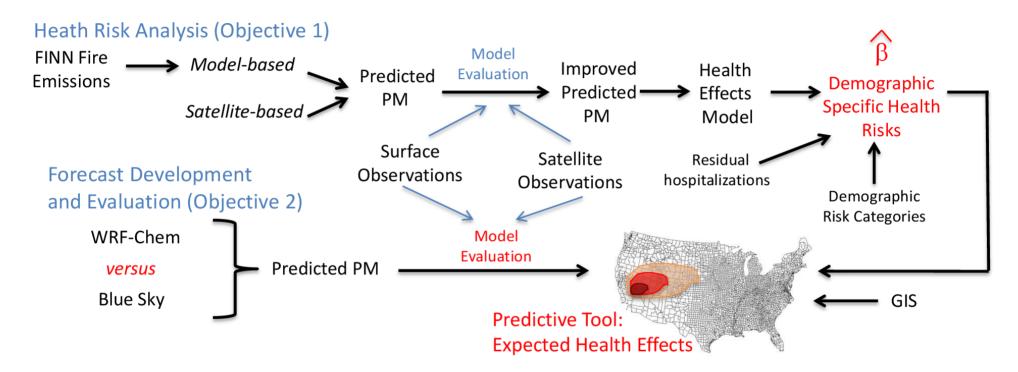

Objective 2: Forecast Evaluation and Development

WRF-Chem

- Analyzed multiple fires
- Sensitivity tests for High Park Fire


June 2012

- Resolution
- Meteorology fields
- Biomass Burning Inventory
- BB emissions timing
- Sub-Grid
 Parameterizations



Bluesky Framework

•Compared forecasts to surface measurements for summer 2015

Forecast tool

CDC Smoke-Health forecast tool Rish Vaidyanathan

Goals for upcoming year

- Publish papers on Washington 2012:
 - Part 1: smoke-exposure estimates (Will Lassman)
 - Part 2: health effects (Ryan Gan)
- Repeat Analysis for Washington 2015, Oregon 2013/2015
- Continue testing smoke-forecast models

Integrate results with CDC

Risks to schedule

- Turnover time: Graduating MS student and new MS student
- Delays in obtaining health and in situ data for summer 2015
- More research questions than staff!

Budget Status

	Budgeted through Year 2	Actual To Date 08/31/2016	Projected through 01/31/2017	Unencumbered through Year 2
Total Costs	767,264.00	438,239.61	573,851.05	193,412.95

- Under budget on project mainly due to previous year

ARL Review

Starting ARL: 2

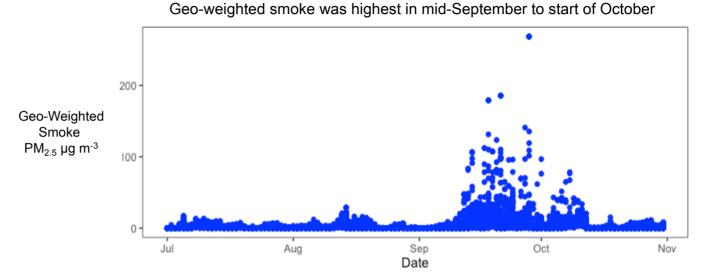
Current ARL: 4

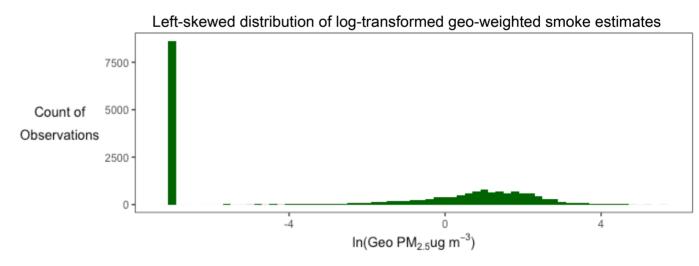
Projected Ending: 8

ARL 4 -Initial Integration & Verification

Components of eventual application system have been brought together and technical integration issues have been worked out: We finalized our exposure estimate techniques and calculated the odds ratio of asthma, all respiratory, COPD, and pneumonia/bronchitis hospitalizations associated with exposure to wildfire smoke using these concentration estimates for one wildfire event. There were some difficulties in merging the concentration estimates with the health and population data, but these issues have been overcome, and we have standardized our process. This has sped up our process and we are now repeating this process for several more fires.

Organizational challenges and human process issues have been identified and managed. Our project is fully staffed at CSU, and we now have named liaisons at each of our stakeholder organizations (CDPHE, Dept. of Ecology, and CDC) with clear partnership goals. These partnerships have been solidified by the transfer of actual data.

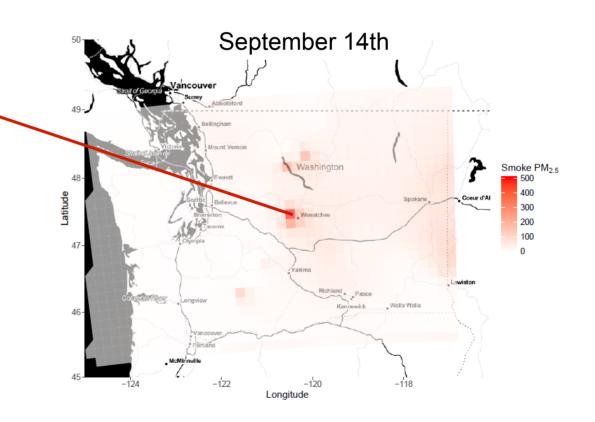

Detailed Budget Status


	Budgeted for Year 2	Actual To Date 08/31/2016	Projected Thru 01/31/2017	Unencumbered for Year 2
Total Salary	423,250.00	249,714.60	318,291.82	104,858.18
Travel	32,163.00	11,577.05	15,052.03	17,110.97
Supplies	4,000.00	5,984.65	5,984.65	-1,984.65
Other Direct				
Tuition	22,736.00	14,338.10	20,142.00	2,594.00
Publications	3,000.00	0.00	0.00	
Computer	2,103.00	1,013.04	1,313.04	789.96
Subcontract NCAR	41,767.00	16,782.20	35,000.00	6,767.00
Total Direct Costs	528,919.00	299,409.70	395,783.60	133,135.40
Indirect Costs	238,345.00	138,829.87	178,067.46	60,277.54
Total Costs	767,264.00	438,239.61	573,851.05	193,412.95

Descriptive Characteristics

Outcomes from July through October were relatively rare, except pneumonia and bronchitis

Outcome	Events
Asthma	1,456
COPD Exacerbation	1,583
Pneumonia	3,165
Arrhythmia	3,238
Cerebrovascular Disease	4,208
Heart Failure	2,975
Myocardial Infarction	2,689


Identify all persons within the CHARS dataset with the outcomes of interest in the specified time frame

September 2012							
Sun	Mon	Tue	Wed	Thu	Fri	Sat	
						1	
2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
16	17	18	19	20	21	22	
23	24	25	26	27	28	29	
30							

Hospital admission for Person *A* occurs on this date.

Join estimations of wildfire smoke to that person's record based on location and date

	September 2012							
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
						1		
2	3	4	5	6	7	8		
9	10	11	12	13	14	15		
16	17	18	19	20	21	22		
23	24	25	26	27	28	29		
30								

Create counterfactual observations when outcome did not occur and join wildfire smoke estimates

	9	Septe	mber	2012			September 7th
Sun	Mon	Tue	Wed	Thu	Fri	Sat	Age of Grand Value of Control of
						1	September 21st
2	3	4	5	6	7	8	48-
9	10	11	12	13	14	15	Wentchee Wanter 49-
16	17	18	19	20	21	22	47- 47- 47- 47- 47- 47- 47- 47-
23	24	25	26	27	28	29	Smoke PM2.5 Smoke PM2.5 Smoke PM2.5 46- Washington
30							September 28th
							Valority Association Washington Lawidon Karawaka Washington Washington Washington Lawidon Karawaka Washington Washington Lawidon Karawaka Washington Lawidon

WRF-Chem and Geo-weighted methods lead to different conclusions for cardiovascular outcomes

	WRF-Chem 10 μg m ⁻³ increase		Geo-weighted 10 µg m ⁻³ increase	
Health Outcome	Odds Ratio	95% CI	Odds Ratio	95% CI
Arrhythmia	0.96	0.92 – 1.01	1.02	0.97 – 1.07
Cerebrovascular Disease	1.01	0.98 – 1.05	1.03	0.99 – 1.07
Heart Failure	0.97	0.93 – 1.02	1.05	0.99 – 1.10
Myocardial Infarction	0.98	0.93 – 1.03	1.05	0.99 – 1.11